

Vishay Semiconductors

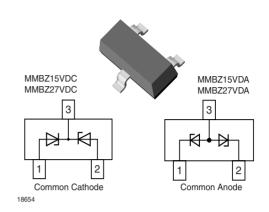
Dual Zener Transient Voltage Suppressor Diodes for ESD Protection

Features

- Dual Silicon Planar Zener Diodes with Common Cathode or Common Anode configurations.
- Dual package provides for Bidirectional or separate unidirectional configurations.
- The dual configurations protect two separate lines with only one device.
- Peak Power: 40 W @1 ms (Bidirectional) .
- High temperature Soldering Guaranteed: 230 °C for 10 seconds.
- · Ideal for ESD Protection.
- For bidirectional operation, circuit connected to pins 1 and 2. For unidirectional operation, circuit connected to pins 1 and 3 or pins 2 and 3.

Mechanical Data

Case: SOT-23 Plastic Package


Weight: approx. 0.008g

Terminals: Solderable per MIL-STD-750, method

2026

Packaging Codes/Options:

GS18/ 10 k per 13 " reel (8 mm tape), 10 k/box GS08/ 3 k per 7 " reel (8 mm tape), 15 k/box

Marking:

MMBZ15VDC = TC5 MMBZ27VDC = TC7 MMBZ6V8DC = ? MMBZ15VDA = TA5 MMBZ27VDA = TA7 MMBZ6V8DA = ?

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

amb,								
Parameter	Test condition	Symbol	Value	Unit				
Peak power dissipation ¹⁾		P _{PK}	40 ⁴⁾	W				
Power dissipation	T _{amb} = 25 °C	P _{tot}	225	mW				
on FR-5 Board ²⁾	Derate above 25 °C		1.8	mW/°C				
Power dissipation	T _{amb} = 25 °C	P _{tot}	300	mW				
on Alumina Substrate ³⁾	Derate above 25 °C		2.4	mW/°C				

 $^{^{1)}}$ Nonrepetitive current pulse per Figure 2 and derate above T_{amb} = 25 $^{\circ}$ C per Figure 3.

Thermal Characteristics

 T_{amb} = 25 °C, unless otherwise specified

arrib	-					
Parameter		Test condition	Symbol	Value	Unit	
Thermal resistance junction	o ambiant air		$R_{ hetaJA}$	556	°C/W	
Operating and storage temperature	erature range		T _j , T _{stg}	- 55 to + 150	°C	

Document Number 85808 www.vishay.com

Rev. 1.2, 30-Jan-04

 $^{^{2)}}$ FR-5 = 1.0 x 0.75 x 0.62 in.

³⁾ Alumina = $0.4 \times 0.3 \times 0.024$ in., 99.5 % alumina.

⁴⁾ The MMBZ6V8DC/A is rated at 24 V.

Vishay Semiconductors

Electrical Characteristics

Partnumber		down age ¹⁾	Test Current	Working Peak Reverse Voltage	Max. Reverse Leakage Current	Max. Reverse Surge Current	Max. Reverse Voltage (Clamping Voltage)	Max. Temperature Coefficient	Max. Forward Voltage	
	V _{BR}	at I _T	I _T	V _{RWM}	I _R	I _{PP}	V _C @ I _{RSM} ²⁾	at V _{BR}	V _F	@ I _F
	\	/	mA	V	nA	Α	V	mV/°C	V	mA
	min	max								
MMBZ6.8VDA	6.48	7.14	1.0	4.5	500	2.5	9.6	3.4	1.1	200
MMBZ15VDA	14.30	15.80	1.0	12.8	100	1.9	21.2	16	0.9	200
MMBZ27VDA	56.65	28.35	1.0	22.0	80	1.0	38.0	30	1.1	200

Note:

Typical Characteristics ($T_{amb} = 25 \, ^{\circ}\text{C}$ unless otherwise specified)

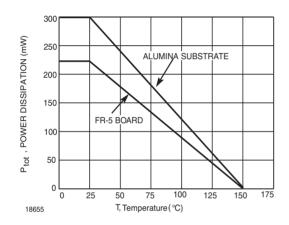


Figure 1. Steady state power derating curve

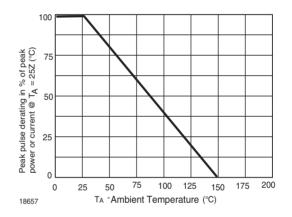


Figure 3. Pulse Derating Curve

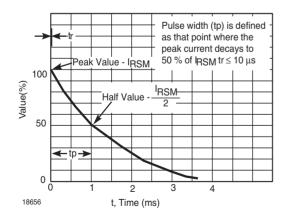
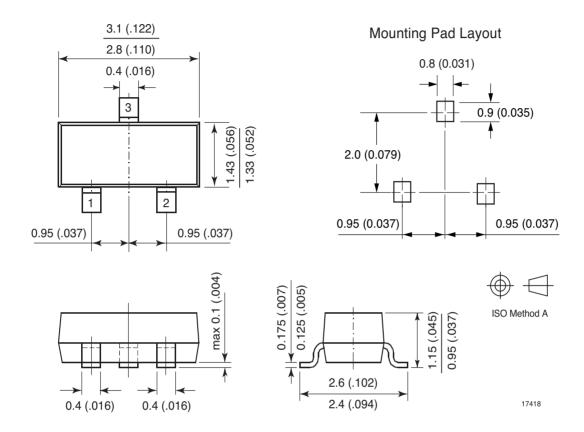


Figure 2. Pulse Waveform

www.vishay.com Rev. 1.2, 30-Jan-04


 $^{^{1)}\,}V_{BR}$ measured at pulse test current I_{T} at an ambient temperature of 25 $^{\circ}C$

²⁾ Surge current waveform per Figure 2 and derate per Figure 3

Vishay Semiconductors

Package Dimensions in mm (Inches)

MMBZ...VDA and C Series

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423

www.vishay.com Rev. 1.2, 30-Jan-04